

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Binary to Decimal in C#

Introduction

In the world of computing, numbers play a crucial role, and different number systems are used to

represent and manipulate data. Two fundamental number systems are binary and decimal. The binary

system is a base-2 number system that uses only two digits, 0 and 1, to represent numbers. On the other

hand, the decimal system, also known as the base-10 system, uses ten digits, 0 to 9, to represent

numbers.

In this next lesson, we will explore the concept of converting a binary number to its decimal equivalent

using C#. We will focus on using loops, specifically the for loop, to solve this problem efficiently. By

understanding and implementing this conversion process, you will gain valuable insights into how

numbers can be represented and manipulated in different number systems.

Using loops, such as the for loop or while loop, is a powerful technique in programming that allows us to

repeat a set of instructions until a specific condition is met. We will leverage this concept to iterate

through each digit of the binary number and calculate its decimal equivalent. By employing a systematic

approach, we can accurately convert binary numbers to their decimal counterparts.

Mastering the conversion from binary to decimal is an essential skill for programmers, as it is widely

used in various applications. From data handling and manipulation to network protocols and

cryptography, understanding binary to decimal conversion is crucial for effectively working with binary

data and ensuring accurate data representation.

In this lesson, we will dive into the intricacies of binary and decimal number systems, explore the use of

loops to solve the conversion problem, and gain a comprehensive understanding of the topic's relevance

in the field of programming. So let's get started and unlock the power of binary to decimal conversion

using C#!

Objectives

The objective of this lesson is to provide a comprehensive understanding of converting binary numbers

to their decimal equivalents using a for loop in C#. The primary objectives are to understand, learn,

practice, and apply the art of converting binary numbers to their decimal counterparts. Each objective

serves as a crucial milestone, fostering a comprehensive understanding of the topic and honing practical

skills essential for any aspiring programmer.

1. Understand Binary and Decimal Systems: Gain a profound comprehension of the binary and

decimal number systems. Grasp the foundational principles of how binary, with its base-2

structure, relates to the familiar decimal system with its base-10 representation.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

2. Learn Binary to Decimal Conversion: Delve into the step-by-step process of converting binary

numbers to decimal. Acquire the knowledge of interpreting binary digits and expressing them in

the decimal system, laying the groundwork for more complex numerical manipulations.

3. Practice Using Loops for Conversion: Engage in hands-on practice with loops, specifically the 'for'

loop, as a powerful tool for converting binary to decimal. Through practical exercises, reinforce

your understanding of loop structures and their application in numeric transformations.

4. Apply Knowledge in Programming Contexts: Bridge theory and practice by applying your

acquired knowledge to real-world programming scenarios. Explore the broader relevance of

binary to decimal conversion, recognizing its importance in algorithms, data structures, and

various programming challenges.

Source code example

1. using System;
2.
3. namespace BinaryToDecimal
4. {
5. class Program
6. {
7. static void Main(string[] args)
8. {
9. Console.WriteLine("iNetTutor.com - Binary to Decimal");
10. // Prompt the user to enter a binary number
11. Console.WriteLine("Enter a binary number: ");
12. string binaryNumber = Console.ReadLine();
13.
14. // Initialize variables for decimal calculation
15. int decimalNumber = 0;
16. int power = 0;
17.
18. // Iterate through each digit of the binary number in reverse order

19. for (int i = binaryNumber.Length - 1; i >= 0; i--)
20. {
21. // Convert the current digit to an integer
22. int digit = int.Parse(binaryNumber[i].ToString());
23.
24. // Calculate the decimal value of the current digit
25. decimalNumber += digit * (int)Math.Pow(2, power);
26.
27. // Increment the power for the next digit
28. power++;
29. }
30.
31. // Display the decimal equivalent of the binary number
32. Console.WriteLine("The decimal equivalent is: " + decimalNumber);
33.
34. Console.ReadLine();
35. }
36. }

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

37. }

Explanation

This C# code converts a binary number entered by the user to its decimal equivalent. Here's a
breakdown of what each part does:
1. Introduction:

• using System;: Includes the standard input/output library for console operations.
• namespace BinaryToDecimal: Organizes the code within a specific namespace.
• class Program: Defines the main class where the code resides.
• static void Main(string[] args): Defines the entry point of the program.
• Console.WriteLine("iNetTutor.com - Binary to Decimal");: Prints a welcome message with the

website name.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

2. User Input and Initialization:

• Console.WriteLine("Enter a binary number: ");: Prompts the user to enter a binary number.
• string binaryNumber = Console.ReadLine();: Stores the user's input as a string.
• int decimalNumber = 0;: Initializes the variable to store the calculated decimal value.
• int power = 0;: Initializes the variable to store the power of 2 for each digit.

3. Conversion Loop:
• for (int i = binaryNumber.Length - 1; i >= 0; i--): This loop iterates through each digit of the

binary number in reverse order.
o int digit = int.Parse(binaryNumber[i].ToString());: Converts the current character (digit)

to an integer (0 or 1).
o decimalNumber += digit * (int)Math.Pow(2, power);: This calculates the decimal value of

the current digit by:
▪ Multiplying the digit with the corresponding power of 2 calculated

using Math.Pow(2, power).
▪ Adding the result to the decimalNumber.

o power++;: Increments the power for the next digit.
4. Output and Pause:

• Console.WriteLine("The decimal equivalent is: " + decimalNumber);: Displays the calculated
decimal equivalent.

• Console.ReadLine();: Pauses the console window before closing.
Points to Note:

• The loop iterates in reverse order because the rightmost digit has the lowest power of 2 (2^0).
• The Math.Pow(2, power) function calculates 2 raised to the power of power.
• The code includes clear comments for better understanding.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Output

Summary

In this lesson, we explored the concept of converting a binary number to its decimal equivalent using a

for loop in C#. We started by understanding the fundamental differences between the binary and

decimal number systems. The binary system uses only two digits, 0 and 1, while the decimal system uses

ten digits, 0 to 9.

We learned that converting a binary number to decimal involves multiplying each digit of the binary

number by the corresponding power of 2 and summing up the results. To implement this conversion, we

leveraged the power of loops, specifically the for loop, in C#.

By iterating through each digit of the binary number in reverse order, we converted the binary digits to

decimal values using int.Parse() and Math.Pow(). We accumulated the decimal values and obtained the

final decimal equivalent.

Throughout the lesson, we focused on understanding the importance of binary to decimal conversion in

programming. This skill is relevant in various areas, such as data manipulation, network protocols, and

cryptographic algorithms.

By practicing and applying the knowledge gained in this lesson, you can confidently convert binary

numbers to decimal using a for loop in C#. This foundational knowledge will serve as a stepping stone

for further exploration and understanding of number systems and their practical applications in

programming.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Exercises and Assessment

To further enhance the understanding and application of the binary to decimal conversion source code, I
suggest the following assessment and lab exam:

Assessment:

Objective Questions (2 points each):

1. What is the base of the binary number system?

2. Explain how the power of 2 is used in binary-to-decimal conversion.

3. What is the purpose of iterating through the binary string in reverse order?

4. Describe the role of the Math.Pow(2, power) function in the code.

5. List two real-world applications of binary-to-decimal conversion.

Coding Exercise (6 points):

1. Modify the code to accept only binary numbers entered as strings. Implement validation to
check for invalid characters (e.g., anything other than 0 and 1).

2. Add an option for the user to choose between converting from binary to decimal or vice versa
(decimal to binary). Implement the necessary logic for both conversions.

3. Enhance the code with comments and user-friendly messages to improve readability and
provide instructions.

Total Points: 14 points

Lab Exam:

Task: Modify and enhance the existing binary-to-decimal conversion code based on the following
requirements:

1. Input Validation: Implement strict validation to ensure only valid binary numbers (strings
containing only 0s and 1s) are accepted. Provide informative error messages for invalid inputs.

2. User Interface: Create a user-friendly interface using console functions. Provide clear
instructions, menus, and error handling.

3. Additional Conversions: Extend the program to handle both binary-to-decimal and decimal-to-
binary conversions. Allow users to choose the desired conversion type.

4. Error Handling: Incorporate robust error handling for potential issues like empty input, non-
numeric input, or exceeding the maximum integer value.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

5. Documentation: Add comments and explanations within the code to enhance clarity and

understanding.

Meta Description

"Learn C# programming with a Binary to Decimal converter. Understand binary systems, use loops, and

enhance your coding skills for efficient number conversion."

