

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Shape Area Calculator in CSharp

Introduction of the lesson

Welcome to an exciting C# programming lesson where we embark on the journey of creating a Shape

Area Calculator. Our primary objective is to equip you with the skills to develop a dynamic program

capable of calculating the areas of various geometric shapes such as circles, squares, and triangles.

Understanding geometric formulas is pivotal in this lesson, as it lays the foundation for implementing

precise area calculations. As we delve into the world of programming logic, you'll grasp how to translate

these formulas into functional code, enhancing your problem-solving abilities. The significance of this

lesson extends beyond C# syntax, offering practical insights into the integration of mathematical

concepts with programming. By the end of this tutorial, you'll not only have a Shape Area Calculator at

your fingertips but also a deeper appreciation for the synergy between geometry and programming

logic.

Objectives of the lesson

This lesson aims to empower you with the skills to create a versatile program capable of calculating the

areas of various geometric shapes. From circles to squares and triangles, we'll explore the essential

elements of user input handling, geometric formulas, and programming logic. Understanding the

significance of geometric formulas in a programming context is key to unleashing the full potential of

this lesson.

This outcome-focused approach ensures that learners not only understand theoretical concepts but

progress to actively learning, practicing, and ultimately applying their skills in a real-world programming

scenario.

1. Understand Geometric Principles:

• Outcome: Grasp fundamental geometric concepts essential for area calculation.

• Indicator: Successful articulation and explanation of key geometric formulas.

2. Learn C# Programming Concepts:

• Outcome: Acquire proficiency in C# syntax and programming logic.

• Indicator: Demonstration of code comprehension and utilization of essential C#

constructs.

3. Practice Problem-Solving:

• Outcome: Apply theoretical knowledge through hands-on problem-solving exercises.

• Indicator: Successful completion of exercises showcasing practical problem-solving

skills.

4. Apply Knowledge to Build a Shape Area Calculator:

• Outcome: Demonstrate practical application by building a functional calculator.

• Indicator: Successful creation of a Shape Area Calculator, showcasing the integration of

geometric principles and programming logic.

By the end of this lesson, you'll not only have a functional Shape Area Calculator but also a deeper

understanding of how to blend mathematical principles with programming logic in C#

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Source code example

1. using System;
2.
3. namespace ShapeAreaCalculator
4. {
5. class Program
6. {
7. static void Main()
8. {
9. Console.WriteLine("iNetTutor.com - Shape Area Calculator");
10. Console.WriteLine("Choose a shape: \n1. Circle\n2. Square\n3. Triang

le");
11. int choice;
12.
13. if (int.TryParse(Console.ReadLine(), out choice))
14. {
15. double area;
16.
17. switch (choice)
18. {
19. case 1: // Circle
20. Console.Write("Enter the radius: ");
21. if (double.TryParse(Console.ReadLine(), out double radiu

s))
22. {
23. area = Math.PI * Math.Pow(radius, 2);
24. Console.WriteLine($"The area of the circle is: {area

}");
25. }
26. else
27. {
28. Console.WriteLine("Invalid input for radius. Please

enter a valid number.");
29. }
30. break;
31.
32. case 2: // Square
33. Console.Write("Enter the side length: ");
34. if (double.TryParse(Console.ReadLine(), out double sideL

ength))
35. {
36. area = Math.Pow(sideLength, 2);
37. Console.WriteLine($"The area of the square is: {area

}");
38. }
39. else
40. {
41. Console.WriteLine("Invalid input for side length. Pl

ease enter a valid number.");
42. }
43. break;
44.
45. case 3: // Triangle
46. Console.Write("Enter the base length: ");
47. if (double.TryParse(Console.ReadLine(), out double baseL

ength))
48. {
49. Console.Write("Enter the height: ");
50. if (double.TryParse(Console.ReadLine(), out double h

eight))
51. {
52. area = 0.5 * baseLength * height;
53. Console.WriteLine($"The area of the triangle is:

 {area}");
54. }
55. else
56. {
57. Console.WriteLine("Invalid input for height. Ple

ase enter a valid number.");
58. }
59. }
60. else
61. {
62. Console.WriteLine("Invalid input for base length. Pl

ease enter a valid number.");
63. }

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

64. break;
65.
66. default:
67. Console.WriteLine("Invalid choice. Please choose a valid

 shape (1-3).");
68. break;
69. }
70. }
71. else
72. {
73. Console.WriteLine("Invalid input for choice. Please enter a vali

d number.");
74. }
75. Console.WriteLine("Press any key in the keyboard to close the consol

e.");
76. Console.ReadKey();
77. }
78. }
79. }

Source code explanation

Imagine the possibilities! With the Shape Area Calculator at your fingertips, you can design a captivating

garden layout, estimate the fabric needed for a custom pillowcase, or even calculate the floor space for

your ideal dream home. This explanation equips you with the knowledge to transform shapes into

numbers, opening doors to countless practical applications in everyday life.

Namespace and Class:

• Namespace: ShapeAreaCalculator organizes the code within a named scope to avoid conflicts

with other code.

• Class: Program is the main class where the code execution begins.

Main Method:

• static void Main(): The entry point of the program, where execution starts.

Output:

• Console.WriteLine(): Displays text messages to the console.

• $ syntax for string interpolation: Embeds variables directly within strings for formatted output.

User Input:

• Console.ReadLine(): Reads user input from the console.

• int.TryParse() and double.TryParse(): Attempt to convert user input to numbers, handling invalid

input gracefully.

Decision-Making:

• switch statement: Chooses a code block based on the user's shape choice.

Area Calculations:

• Math.PI and Math.Pow(): Access mathematical constants and functions for calculations.

Error Handling:

• else blocks: Handle invalid inputs, providing informative messages.

Program Termination:

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

• Console.ReadKey(): Pauses the console until a key is pressed.

Functionality:

1. Welcome Message and Shape Selection:

o Displays a welcome message and prompts the user to choose a shape (circle, square, or

triangle).

2. Input Validation:

o Checks if the user's choice is a valid number (1, 2, or 3).

3. Shape-Specific Calculation:

o Based on the chosen shape, prompts for the necessary dimensions (radius, side

length, base length, height).

o Validates the input to ensure it's a valid number.

o Applies the appropriate area formula and displays the calculated area.

4. Error Handling:

o Catches invalid inputs and provides clear error messages to guide the user.

5. Program Ending:

o Invites the user to press any key to close the console window.

Summary and Conclusion

In this lesson, we embarked on the creation of a Shape Area Calculator using C#, delving into

fundamental programming concepts and mathematical principles. The key concepts covered can be

summarized as follows:

1. User Interaction:

• Introduced a user-friendly interface prompting users to choose a geometric shape for

area calculation.

• Implemented input validation to ensure the program handles user choices robustly.

2. Geometric Formulas:

• Utilized geometric formulas for calculating the area of different shapes, including circles,

squares, and triangles.

• Showcased the integration of mathematical concepts into programming logic for

practical applications.

3. Switch Statements:

• Implemented a switch statement to efficiently handle different shape selections, making

the program more readable and modular.

4. Input Handling and Error Management:

• Demonstrated effective user input handling and error management, ensuring the

program gracefully handles unexpected inputs.

5. Practical Application:

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

• Encouraged learners to apply theoretical knowledge to build a functional Shape Area

Calculator.

• Focused on the importance of a clear and intuitive user interface for a positive user

experience.

Importance of Understanding Geometric Formulas in Programming:

Understanding geometric formulas is foundational for programmers, especially when dealing with

applications involving calculations or simulations. In this lesson, the practical application of geometric

formulas in the context of a Shape Area Calculator reinforces the following points:

1. Real-World Relevance:

• Geometric formulas have direct applications in various fields, from graphics

programming to physics simulations.

• Mastery of these formulas empowers programmers to create solutions that model and

simulate real-world scenarios accurately.

2. Problem-Solving Skills:

• Integrating geometric formulas into programming exercises enhances problem-solving

skills.

• Programmers equipped with a solid understanding of these formulas can approach

complex problems with confidence.

3. Versatility in Applications:

• Geometric concepts are pervasive in diverse programming domains, such as game

development, data visualization, and engineering simulations.

• A programmer well-versed in geometric formulas can contribute to a wide array of

projects.

4. Enhanced Code Readability:

• Clear utilization of geometric formulas improves code readability and maintenance.

• Code that reflects a deep understanding of mathematical concepts is more likely to be

efficient and easily comprehensible by others.

In conclusion, this lesson not only provided a practical example of a Shape Area Calculator but also

underscored the significance of understanding geometric formulas in the broader context of

programming. As you continue your coding journey, remember that the synergy between mathematics

and programming is a powerful asset, enabling you to craft elegant and efficient solutions to a variety of

problems. Happy coding!

Exercises

These exercises aim to challenge and expand your skills, encouraging you to explore various aspects of

C# programming, software design, and user interaction. As you work through these exercises, you'll gain

a deeper understanding of best practices and refine your programming capabilities.

1. Error Handling Refinement:

• Exercise: Enhance error handling to provide more specific feedback on the nature of the

error (e.g., "Invalid radius input" or "Base length must be a positive number").

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

• Objective: Improve user experience by offering precise guidance on correcting input

errors.

2. Function Decomposition:

• Exercise: Decompose the logic for calculating the area of each shape into separate

methods (e.g., CalculateCircleArea, CalculateSquareArea, CalculateTriangleArea).

• Objective: Enhance code modularity, readability, and maintainability.

3. Additional Shapes:

• Exercise: Extend the program to support additional geometric shapes, such as rectangles

or parallelograms.

• Objective: Practice expanding the functionality of the program to handle a broader

range of shapes.

4. Code Comments and Documentation:

• Exercise: Add comprehensive comments and documentation to explain the purpose and

functionality of each code section.

• Objective: Improve code understanding for both yourself and potential collaborators.

5. Enhanced Input Validation:

• Exercise: Implement advanced input validation techniques, such as restricting input

ranges or handling edge cases more gracefully.

• Objective: Strengthen the program's resilience to a wider range of user inputs.

Meta Description

"Boost your C# skills with Shape Area Calculator exercises. Enhance error handling, modularity, GUI, and

more for a robust geometric programming experience."

