

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Guess Number Game in CSharp

Guess the Number: Create a simple guessing game where the program generates a random number

between 1 and 100, and the user has to guess the number. Provide hints like "Too high" or "Too low"

until the user guesses correctly. Use a while loop for this exercise.

Objective: Develop a simple guessing game in C# to reinforce understanding of random number

generation, user input handling, and the use of loops.

Introduction

Welcome to an exciting journey into the world of C# programming, where we embark on the creation of

a thrilling Guess the Number game. In this lesson, our primary objective is to delve into the fundamental

concepts of random number generation, user input handling, and the seamless integration of loops to

craft an engaging gaming experience.

Overview of the Lesson's Objective: Our goal is to equip you with the skills needed to develop a dynamic

and interactive guessing game, reinforcing your understanding of essential programming constructs.

Throughout this exploration, we'll unravel the mysteries of the Random class, unlocking its power to

generate unpredictable numbers that lie at the heart of our guessing game.

Introduction to the Guess the Number Game: Imagine a scenario where the computer selects a random

number, and your task is to decipher it through a series of informed guesses. This game not only

entertains but serves as a practical application of core programming concepts. As we dive into the Guess

the Number game, you'll discover the key components that make it tick – from user input mechanisms

to the hints provided based on your guesses.

Exploring the Random Class for Generating Random Numbers: Central to our journey is the exploration

of the Random class, a powerful tool that enables us to introduce an element of unpredictability into

our game. We'll unravel its functionality, understand how it generates random numbers within specified

ranges, and leverage this knowledge to infuse excitement and unpredictability into our Guess the

Number adventure.

Get ready to flex your programming muscles as we venture into the captivating realm of guessing

games, where randomness meets logic, and each guess brings you one step closer to unraveling the

mystery number. Let the guessing game commence!

Objectives

This lesson unfolds with a multidimensional objective: to deepen your understanding of key

programming concepts, facilitate active learning through hands-on practice, and empower you to apply

acquired skills in a real-world gaming scenario.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Objective-Based Education (OBE) Focus:

1. Understand Random Number Generation

• Outcome: Develop a comprehensive understanding of the Random class in C# and its

role in generating unpredictable numbers.

• Indicator: Provide detailed explanations on the mechanisms employed by the Random

class for number generation.

2. Learn User Input Handling and Validation

• Outcome: Acquire proficiency in handling and validating user input for a guessing game.

• Indicator: Engage in practical exercises that involve user input, emphasizing the

importance of validation.

3. Practice Loop Structures in C#

• Outcome: Gain hands-on experience in utilizing while loops for continuous user guessing

until the correct number is identified.

• Indicator: Implement and refine loop structures within the Guess the Number game,

emphasizing practical applications.

4. Apply Game Development Concepts

• Outcome: Apply learned concepts to create a functional Guess the Number game with

dynamic elements such as hints and user feedback.

• Indicator: Demonstrate the ability to translate theoretical knowledge into a tangible and

interactive gaming experience.

These four OBE-focused objectives form the cornerstone of this lesson, guiding you to not only

understand and learn essential programming principles but also actively practice and apply them in the

development of an engaging Guess the Number game. Let the exploration of C# programming and game

development begin!

Source code example

1. using System;
2.
3. namespace GuessTheNumber
4. {
5. class Program
6. {

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

7. static void Main()
8. {
9. Console.WriteLine("iNetTutor.com");
10. Console.WriteLine("Welcome to the Guess the Number game!");
11.
12. // Generate a random number between 1 and 100
13. Random random = new Random();
14. int targetNumber = random.Next(1, 101);
15.
16. // Initialize user guess and attempts
17. int userGuess = 0;
18. int attempts = 0;
19.
20. // Start the guessing loop
21. while (userGuess != targetNumber)
22. {
23. // Prompt user for input
24. Console.Write("Enter your guess (between 1 and 100): ");
25.
26. // Validate and parse user input
27. if (int.TryParse(Console.ReadLine(), out userGuess))
28. {
29. // Provide hints based on user's guess
30. if (userGuess < targetNumber)
31. {
32. Console.WriteLine("Too low. Try again!");
33. }
34. else if (userGuess > targetNumber)
35. {
36. Console.WriteLine("Too high. Try again!");
37. }
38.
39. // Increment attempts
40. attempts++;
41. }
42. else
43. {
44. Console.WriteLine("Invalid input. Please enter a valid numbe

r.");
45. }
46. }
47.
48. // Display success message
49. Console.WriteLine($"Congratulations! You guessed the number {targetN

umber} in {attempts} attempts.");
50. Console.WriteLine("Please press any key in the keyboard to close the

 console.");
51. Console.ReadKey();
52. }
53. }
54. }

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Explanation

The provided source code is a C# program that implements a "Guess the Number" game. Let's go

through the code and understand how it works.

Program Structure

The program is a console application with a single class named Program. It contains a Main method,

which serves as the entry point of the program.

Game Setup

The program starts by displaying the messages "iNetTutor.com" and "Welcome to the Guess the

Number game!" to the console.

Next, it generates a random number between 1 and 100 using the Random class. The generated number

is stored in the targetNumber variable.

The program also initializes two variables: userGuess to store the user's guess and attempts to keep

track of the number of attempts made by the user.

Guessing Loop

The program enters a while loop that continues until the user's guess matches the target number. Inside

the loop, the program prompts the user to enter their guess by displaying the message "Enter your

guess (between 1 and 100): ".

The user's input is then read using the Console.ReadLine method and stored in the userGuess variable.

The program validates the user's input by using int.TryParse to check if the input can be successfully

parsed as an integer. If the input is a valid number, the program proceeds to provide hints based on the

user's guess.

If the user's guess is lower than the target number, the program displays the message "Too low. Try

again!". If the guess is higher, the program displays "Too high. Try again!". In both cases, the attempts

variable is incremented.

If the user's input is not a valid number, the program displays the message "Invalid input. Please enter a

valid number."

Game Completion

Once the user's guess matches the target number, the program exits the while loop. It displays a success

message using string interpolation to include the target number and the number of attempts made by

the user.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Finally, the program prompts the user to press any key to close the console using the Console.ReadKey

method.

Example Execution

Here's an example execution of the program:

iNetTutor.com

Welcome to the Guess the Number game!

Enter your guess (between 1 and 100): 50

Too low. Try again!

Enter your guess (between 1 and 100): 75

Too high. Try again!

Enter your guess (between 1 and 100): 63

Too low. Try again!

Enter your guess (between 1 and 100): 70

Too high. Try again!

Enter your guess (between 1 and 100): 67

Congratulations! You guessed the number 67 in 5 attempts.

Please press any key on the keyboard to close the console.

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

Output

Summary

Congratulations on completing your journey through C# programming and creating a Guess the Number

game! You've learned about random number generation, handling user input, and using loop structures.

Let's summarize what you've learned and discuss what's next for you.

Key Takeaways

https://www.inettutor.com/

INetTutor.com

Online Programming Lessons, Tutorials and Capstone

Project guide

1. Random Number Generation: You learned how to create random numbers in C#. This is useful

for making games more exciting and unpredictable.

2. User Input Handling: You learned how to handle the input from users. This means you can make

sure they enter the right kind of information and give them helpful messages if they make a

mistake.

3. Loop Structures: You used a loop called "while" to repeat actions in your game. This allows you

to keep asking the user to guess the number until they get it right.

Next Steps

As you think about what you've accomplished, remember that this is just the beginning of your

programming journey. Here are some ideas for what you can do next:

1. Keep Practicing: Practice regularly to get better at programming. Work on small coding exercises

or projects to keep improving.

2. Try More Complex Projects: Challenge yourself by working on harder programming projects.

This will help you understand C# better and improve your problem-solving skills.

3. Keep Learning: Stay up-to-date with new things in C# programming. Look for online resources,

tutorials, and courses to learn more and expand your knowledge.

4. Join Programming Communities: Connect with other programmers online. Join forums or groups

where you can share your projects and get feedback from others.

Meta Description

"Elevate your C# skills with Guess the Number exercises. Code optimization, user experience, and

advanced techniques await! "

